
Sutnnitted to IRREGULAR'98, Berkeley, CA, Aug. 9-11, 1998.

Using Multithreading for tile Automatic Load Balancing of

2D Adaptive Finite Element Meshes*

Gerd tIeber Rupak Biswas* Parimala Thulasiraman Guang R. Gao

Abstract

In this paper, we preseilt a multithreaded approach for the automatic load balmlcing of adaptive
finite element (FE) meshes. The platform of our choice is the EARTH multithreaded system which
offers sufficient capabilities to tackle this problem. We implement the adaption phase of FE applica-
tions on trimlgular m_hes, azld exploit the EARTH token mechaafism to automatically balance the

resulting irregular a_ld highly nonuniform workload. We discu_ the results of our experiments on
EARTH-SP2, an implementation of EARTH on the IBM SP2, with different load balancing strategies
that are built into the runtime s)_tem.

Key words: multithreading, unstructured mesh adaption, indexing scheme, dynamic load balancing.

1 Introduction

In this paper, we exmnine a multithreaded approach for the automatic load balancing of adaptive

finite element (FE) meshes. During a FE adaption phase, the unstructured mesh is refined/coarsened

(according to some application-specific criteria), and the workload may become (seriously) unbalanced

on a multiprocessor system. This significantly affects the overall efficiency of parallel adaptive FE
calculations. Some of the difficulties encountered when using the traditional approad_ to resolve the

load imbalance problem can be summarized as follows:
• It is necessary to assemble global mesh information to make an accurate analysis of the general load

situation - a step that often creates serious bottlenecks in practice.

• Significant effort is usually required to preserve data locality while making the load balancing decisions

an optimization which is computationally difficult.

• To make matters worse, the evolution of the computational load and data locality requirements are

dynmnic, irregular, and unpredictable at compile time.

Multithreaded architectures, such as the EARTH (E_cient Architecture for Running THreads) sys-

tem [6], offer new capabilities and opportunities to tackle this problem. They strive to hide long latency
operations by overlapping computation and communication with the help of thread_. A thread is a

(small) sequence of instructions. EARTH provides mechanisms to enable automatic load balancing for

applications that do not allow a good static (compile time) task distribution. The progrmnmer can
simply encapsulate a flmction invocation as a token. The advantage of this token mechanism is that

they can flexibly migrate over processors, by memos of a load balancer.
Based on our experience with EARTH, we decided to purse a novel approach to implement the dy-

namic mesh adaption procedure proposed in [1]. Our decisions were based on the following observations:
• EARTH provides a runtime load balancing mechanism at a very fne-grain level, i.e., the token can

be an ultra light-weight function invocation. Therefore, as long ms the computation generates a large

number of such tokens, it is likely that the EARTH runtime system can automatically distribute them

*For additional information contact: CAPSL, University of Delaware, 140 Evems tlall, Newark, I)E 19716;

{heber, thulasir, _ao }©capsl. udel. edu

| NA,_A /\nle_ }{(!,se_tr(:}l(_(._l)ter__vlo_(?t_ }_i(!l(],(_A 9403,5; rbiswas©nas.nasa.gov

to the processors to keep them useflllly busy. It is our hypothesis that we can thus eliminate an explicit

repartitioning/remapping phase (in the first order) and the gathering of global mesh information.
* Locality is always an important issue for elFmiency. However, since EARTH has tile ability to tolerate

latency using multithreading, its performaame is less sensitive to the amount of non-local accesses by
each processor. In other words, the optimality of locality or data distribution is less critical. Instead

of optimally trying to repartition/remap the data to minimize communication, the user should take

advantage of the EARTH token mechanism and structure the algorithm/code such that the input

arguments to a token can be migrated easily with the token itself. The token should thus have good

mobility.

• The difficulty of handling the irregular and unpredictable load evolution in traditional systems is partly

due to the limitations of the data parallel programming model and the SPMD execution paradigm

where the computation in each processor should be loosely synchronous at a coarse-grain level. The

EARTH execution model is fundamentally asynchronous and does not rely on the SPMD model.

Fhnction level parallelism can be naturally expressed at a fine-grain level in the EARTH programming

paradigm. The possible association of a parallel function invocation with a token at such a fine grain

enables the runtime load balancing mechanism to work smoothly with the evolving computational
load.

We implement the adaption phase of a sinmlated FE calculation and exploit the EARTH token

mechanism to automatically balance the highly nonuniform workload. To achieve good token mobility,

we apply a new indexing methodology for FE meshes that does not assume a particular architecture

or programming environment. During mesh adaption, tokens that migrate to another processor to be

executed leave the processed data in that processor instead of transferring the data back to the processor

that generated the token. This is a novel approach in solving this problem: we avoid doing work twice

and do a load-driven remapping without explicit user intervention. A major part of this paper is devoted

to a discussion of the quality of such an approach which can be achieved using different load balancing

strategies (built into the EARTH runtime system).

2 The EARTH System

2.1 The EARTH Platform(s)

EARTH (Efficient Architecture for Running THreads) [10] supports a multithreaded program execution

model in which user code is divided into threads that are scheduled atomically using dataflow-like

synchronization operations. These "EARTH operations" comprise a rich set of primitives, including

remote loads and stores, synchronization operations, block data transfers, remote function calls, and

dynamic load balancing. EARTH operations are initiated by the threads themselves. Once a threa(t is

started, it runs to completion, and instructions within it are executed in sequential or(ter. 1 Therefore,

a conventional processor can execute a thread efficiently, even when the thread is purely sequential.
For this reason, it is possible to obtain single-node performance close to that of a purely sequential

implementation, as shown in our earlier work [12].

Conceptually, each EARTH node consists of an Execution Unit (EU), which executes the threads

and a Synchronization Unit (SU), which performs the EARTH operations requested by the threads (cf.
Fig. 1). The EARTH runtime system is currently available on the MANNA architecture [9], the IBM

SP2 multiprocessor [3], and the Beowulf workstation dusters.

2.2 The EARTH Threaded-C Language

Currently, programs running on EARTH are written in Threaded-C, a C extension containing multi-

threading instructions. It is clean and powerful enough to be used as a user-level, explicitly parallel

programming language. Figure 2(a) shows a simple example of a Threaded-C flm(:tion that computes

llnstructions may be executed ot,t of order, as on a superscalar mm:hine, as long _us the. sere&aries of the sequential
ordering are obeyed.

; I Local Memor

SI -].

1

• _ Z

Local Memory

Network

Figure 1: 'File EARTH architecture.

Fibonacci numbers using binary recursion. The keyword THREADED specifies that this function's
frame should be allocated from the heap and that the function may contain xnultiple threads. 2 This

function contains two threads. Each thread, except for the first, begins with a label THREAD-n; the

first thread begins at the start of the function, and is automatically executed when the function is invoked

using an INVOKE or TOKEN instruction. Eadl thread ends with either END_THREAD(), which

simply executes a fetch_next instruction, or END-.FUNCTION(), which executes an end_function
instruction to deallocate the frmne before executing a fetch_next.

TItREADED fib(SLOT *done, long n, long *result)

{
SLOTS SYNC_SLOTS[l];

long suml, sum2;

if (n<2) {

DATA SYNC_L(1, result, done);

} else {

INrF_SYNC(0, 2, 2, 1);

'IX)KEN(fib, SLOT_ADR(0), n-1, &sum 1);

TOKEN(fib, SLOT ADR(0), n-2, &sum2);

END_THREAD();

THREAD_l:

DATA_SYNC_L(suml + stun2, resull, done);

}
END_FUNCTION();

}
(a) Threaded-C example of fib program

THREADED vadd(SLOT *done, int size, double *a, double *b, double *res)

{
SLOTS SYNC_SLOTS[2];

int i; double la, lb;

INIT_SYNC(0, 2, 2, 1);

1Nrr_sYNC(1, size, size, 2);

for (i=0; i<size; i++) {

GET SYNC_D(a++, &la, 0); GET SYNC_D(b++, &lb, 0);

END_qtlREAD 0;

THREAD_I:

DATA SYNC_D(Ia+Ib, res++, l);
}
END TIIREAD0;

THREAD_2:

RSYNC(done);

END_FUNCTION();
}

(b) Example of split-phase transactions in Threaded-C

Figure 2: Two examples of EARTH Threaded-C programs.

The fib function has a single sync slot. Since fib uses simple binary recursion, it needs to invoke itself

twice (if n>2) and add the results of both children. Therefore, the INIT_SYNC conmland sets the sync

count to 2. The other arguments to this command are tile slot number (0 in this case), the reset count

(2), and tile thread number to execute when the sync count reaches 0 (THREAD_l). Note that the
sync count and the reset count are the same. This is often the case, but not required. The sync count
could be initialized to a lower value to indicate that some initial data is already available, or to a higher

value to force the thread to wait for additional events to occur during initialization.

The function fib takes two arguments in addition to n. These are pointers to the address where the

result should be sent (result), az_(t to the sync slot that receives the sync signal (done). For coding

efficiency, data and sync slot locations are represented in Threaded-C as single addresses rather than as

<fp, off,set> pairs. If n<2, the function sends a 1 to *result and signals the sync slot *done (atomically,

using a DATA-SYNC). 3 Otherwise, it invokes two instantiations of itself, telling each to signal sync slot

0 (the macro SLOT_ADR(0) generates a pointer to the correct slot). The TOKEN command is used

_Non-threaded functions are. speci[ied _s regular (_ functions.

aThe suffix indicates the type of value being I;r_nsferred, e.g., -L for hmg or _I) for double.

to invoke the load-balancing mechanism. The initial thread then terminates, and THREAD_I will not

be executed until both functions return their values and signal slot 0. Other threads in the ready queue

cml be executed in the interim. When THREAD_I is activated, the addition is performed, the data is

sent to this flmction's caller, and the frmne is deallocated. Note that thread boundaries can be located

inside any compound statement, e.g., the if-statement. In this example, if n<2, the progrmn jumps to

the middle of THREAD_I and executes END_FUNCTION().

Another example is shown in Fig. 2(b). This shows a function vadd that fetches the elements of

vectors stored on a remote processor using GET-SYNC instructions. This code effectively performs

split-phase transactions, because THREAD_I will not start until both values have returned (assuming

that slot 0 has sync and reset counts of 2). This code is purely sequential, but the time spent waiting
for remote accesses can be used to execute another thread.

In addition, for those applications for which a good task distribution cabinet be determined statically

by the programmer and communicated to the compiler, EARTH provides an automatic load balancing

mechanism. The programmer can simply encapsulate a function invocation as a token. A token is sent

to the SU, which puts it on top of the local token queue. When there are no more threads in the ready

queue, the SU removes a token from the top of the token queue and invokes the function as specified

locally. This load balancing technique is derived from the method of token management used in the

ADAM architecture [11]. Note that putting locally-generated tokens on top of the queue and then
removing tokens from the top results in a depth-first traversal of the call-graph. This generally leads to

better control of functional parallelism, i.e., it diminishes the likelihood of parallelism explosion that can

exhaust the memory resources of a node.

When both the ready queue and the token queue are empty, tile SU sends a message to a neighboring

processor requesting a token, in effect performing work stealing. The neighboring processor, if it has
tokens in its queue, extracts one from the bottom of its queue and sends it back to the requester. In this

manner, a breadth-first traversal of the call-graph is implemented across processors, hopefully resulting in

a better distribution of tasks. If the neighboring processor does not have any tokens to satisfy a request,
the neighbor's neighhor is queried, and so on. Either a token will be found, or tile request cazmot be

fldffiled. Idle processors periodically query their neighbors for work.

3 An Indexing Technique for FE Meshes

Dynamic mesh adaption is a common and powerful technique for efficiently solving FE problems. Tile

adaption of a mesh is achieved by coarsening and/or refining some elements of the computational mesh.

In 2D FE meshes, triangular elements are the most popular. Once a triangle is targeted for refinement,
it is generally subdivided by bisecting its three edges to form four congruent triangles as shown in Fig. 3.

This type of subdivision is called isotropic (or 1:4) and the resulting triangles are referred to as being

red. A problem is that the refined mesh will be nonconforming unless all the triangles are isotropically

subdivided. To get a consistent triangulation without global refinenlent, a second type of subdivision is

allowed. For example, a triangle may be subdivided into two smaller triangles by bisecting only one edge

as shown in Fig. 3. This type of subdivision is called anisotropic (or 1:2 in this case) and the resulting

triangles are referred to as being green. The process of creating a consistent triangulation is defined as

Figur(, 3: The left, picture shows the isotropic subdivision of a triangle. The right one gives an exarnph:
of anisotropic subdivision.

a closure operation. Note that several iterations may i)e necessary to achieve closure [1].

A couple of additional rules are applied, primarily to assure that the quality of the adapted mesh

does not deteriorate drastically with repeated refinement:

1. All triangles with exactly two bisected edges have their third edge also bisected. Thus, such triangles

are isotropically refined.

2. A green triangle cmmot be further subdivided. Instead, the previous subdivision is discarded and

isotropic subdivision is applied to the (red) ancestor triangle [2].

It is the task of an index scheme to properly name or label the various objects (vertices, edges,

triangles) of a mesh. We prefer the term index scheme instead of numbering to stress that the use of

natural numbers as indices is not sufficient to meet the naIning requirements of the FE objects on parallel
architectures.

We give here a brief description of our indexing technique for the sake of completeness; for a detailed

discussion, refer to [7]. Note that our technique is intended to be used for hierardfical meshes. Our index
scheme is a combination of coarse and local schemes. The coarse scheme labels the objects of the coarse

mesh in such a way that the incidence relations can be easily derived from the labels (cf. Fig. 4). The

1 2

5 8

4 6 7

Figure 4: An L-shaped domain and its coarse triangulation.

vertices are enumerated starting from 1. Then the set of vertices for the coarse triangulation consists of

the following numbers:

vertices = {1, 2, 3, 4, 5, 6, 7, 8}.

The edges of the coarse triangulation are indexed by ordered pairs of integers that correspond to the

endpoints of the edges. The ordering is chosen so that the first index is less than the second one. For

the example in Fig. 4, the set of coarse edges consists of the following pairs:

edges= {(1,2), (1,3), (1,5), (2,5), (3,4), (3,5), (3,6),

(4,6), (5,6), (5,7), (5,8), (6,7), (7,8)}.

The same principles are applied to index the coarse triangles. They are denoted by the triple consisting

of their vertex numbers in ascending order. Thus, the set of coarse triangles reads:

tri,_ugles : {(I,2,5), (1,3,5), (3,,1,6), (3,5,6), (5,6,7), (5,7,8)}.

Note that this index scheme can be applied to elements with curved boundaries as well.

The local scheme exploits the regularity (and the finiteness) of the refinement rules to produce names

for the objects at subsequent refinement levels [7]. We use (scaled) natural coordinates as indices in the

local scheme. Again, this is done in a way such that the incidence relations are encoded in the indices of

the objects. For example, the set of vertices at level k in the local model is given by:

vk : ((a,t,,c) c _z Ia+_+_ = 2k}.

We do not know which of these will actually be present; however, we already have names for them.

Figure 5 shows the local indices for tile vertices an(1 the triangles on tile first two refinenmnt levels (for

(o,o,t) (0,0,2)

(1,0,0) (0,1,0) (2,0,0) (1,1,0) (0,2,0)

Figure 5: Examples of tile local index schelne for triangular elements. The vertices and triangles are

denoted by integer triples (triangles by bold face).

isotropic subdivision). The coarse and local schemes are combined by taking the union of tile Cartesian

products of the coarse mesh objects with their corresponding local schemes. Ambiguities are resolved

by using a normal form of the index.

The key features of such a scheme are:

• Each object is assigned a global name that is independent of any architectural considerations or

implementation choices.

• Combinatorial information is translated into simple arithmetic.

• It is well-behaved under (adaptive) refinement. No artificial syncbronization/serialization is introduced.

• It can be extended (with appropriate modifications) to three dimensions [7].

4 Description of the Test Problems

4.1 Mesh, Partitioning, and Mapping

As the initial mesh for our experiments, we choose a rectangular mesh similar to, but much larger

than, the one shown in Fig. 6. Mesh generation simplicity was an overriding concern. However, we

never, neither in the algorithms nor in the implementation, exploit this simple connectivity. Recall that

geometry infornlation is irrelevant for our index scheme. Mesh adaption on even a simple case like this

can fully exercise several aspects of the EARTH multithreaded system and its dynamic load balancing

capabilities.

//////
//////
//////
///////

Figure 6: A small sample of our test mesh.

Fine-grain inultithreading would allow us to have one thread per element. However, to control

greamlaxity and to prevent]mgmentation 4 of the triangulation, we choose partitions as our smallest

migratable unit. Reference [4] gives a good overview of common partitioning techniques and mapping

strategies. Base.d on their observations, we decided to use a P x Q block partitioning.

4Cm.rently, the EA]{;I'H r_mtime system does not stipl)ort a restsi(:t(:d migration of tokens.

Initially, tile entire mesh completely resides on node 0. Then a marking procedure (an e_'T_or es-

timator/indicator in real applications) marks edges/elements for refinement or coarsening (on higher

levels). Based on this marking, tokens one for each partition, are generated that perform the ac-
tual refinement. This situation immediately serves as a stress test for the EARTH token mechasfism

to automatically balance the highly nonuniform workload. If a token migrates to and is executed on

another processor, it transfers the partition and refinement information to the executing node. The

actual refinement/coarsening is done there. At this point, it is therefore absolutely crucial to compress

the metacontext as much as possible. Here the property of our index scheme to provide global indices be-

comes extremely usefuh it is not necessary to transform names if we cross processor/memory boundaries.

FUrthermore, only the indices of the elements have to be transferred since the indices of all other objects

(edges, vertices) can be easily recomputed [7]. (This can be further optimized since a parent element
can, in conjunction with the refinement information, rapidly calculate the indices of its children.)

For mesh refinement, one can distinguish between two strategies. In the first case, a parent element

is replaced by its children, i.e., no history information is preserved. In the second case, the refinement
history is maintained. The advantage of the second strategy is that parent objects do not have to be

reconstructed from scratch during mesh coarsening. We have implemented this second strategy [1].
When all the elements in a FE mesh are subdivided isotropically, we refer to it as uni/orrn refinement.

This procedure automatically leads to a conforming triangulation. In the case of nonuni/orm refinement,

a (iterative) consistency procedure is required since adaptive coarsening/refinement generally leads to

inconsistent triangulations. Moreover, to guarantee mesh quality using our adaption algorithm, the

parents of green triangles are reinstated before further refinelnent [2].

In real applications, the mesh adaption is driven by an error indi('ator that is obtained either ge-

ometrically or from the nmnerical solution. The computational mesh is refined in regions where the

indicator is high, and coarsened in regions where it is low. In our experiments, we completely ignore the

physics and/or the geometry of the application, and use a random number generator to select elements

for adaption. We can mimic the behavior of an error indicator by suitably adjusting the distribution
pattern of the random numbers.

4.2 Load Balancing Strategies

For a detailed description of the load balancing strategies that have been implemented in the EARTH-

SP 5 runtime system, we refer the reader to [3]. This is a comprehensive study that provides a_l excellent

overview of the implemented strategies and their qualitative behavior under several stress tests.

Some of the questions we would like to answer for our particular simulation are:

• What portion of the total number of elements are finally located on nodes other than node 07 How

do the nmnbers of nodes and tokens generated per node affect this behavior? Is the load acceptably
balanced outside of node 07

• How does the token generation process affect the runtime? Is there a measurable systenl overhead?

• Does an increased number of tokens decrease the variance of the load balaalcer (as one would ex'-pect)?

• How does the system behave if there are less tokens than processors?

5 Results

The data structure used to keep the indices of our FE mesh objects is a red-black tree [5], as it is used in
the implementation of the set container in the C++ Standard Template Library. Reference [8] discusses
some related issues. The code for the uniform refinement case consists of about 2000 lines of Threaded-C

code. (This includes the code for the red-black tree.) In the nommiform case, closure of the trias_gulation

process is added, and the code is about 2700 lines.

'Ft_e program contains certain optimizations for the case when a token is executed on the node it

originates. Executing the program on one node implies that all tokens are both generated and executed

on the same node. In that case, no remote operations or tree compression/expansion are necessary.

5'Fhis refers to the portable version of Thrcaded-C availat)h_ for the IBM SI'2 _ul(l 51'3.

Tile initial mesh is tile s_mm for all the experiments and consists of 20,t8 vertices, 5953 edges, and

3906 triangular elements. At the begimling of each experiment, the entire mesh resides on node 0. It is

the responsibility of the EARTH runtime system to scatter partitions across ttle available nodes.

Currently, there are eight different load balancers available with EARTH-SP, and we tested all of

them. As a representative for the discussions in this section, we chose the DUAL load balaneer. It

is one of the simplest load balancers (a virtual ring [3]), and does not provide the best quantitative

results for our e.xperiments. However, its general behavior is comparable with the other load balancers

in EARTH-SP. This indicates a certain robustness of the whole system, l,br the sake of simplicity and

space restrictions, we analyze only the uniform refinement case. A representative nonuniform example

will be discussed in the final presentation.

A total of four mesh refinement steps were performed in the uniform case. The final mesh contained

999,936 triangles since each triangle was refined isotropically. We measured the execution time upon

completion of these four steps.

102

'101

100
10°

Resultslor DUAL (Ioglog)

.... :. :..:..:.:. :.:.:.!..... :.. ;..:. ; :,:.:.:,_...... :..:. _.:._.-;!. _...:..: .:.: : :.:

.... :...:..:..: .:. ? ?:,:) • . _ • .:, _ ,:.:.:,:,: :.. ,:.. ? .:. ; _-:[? :.. ,:..:..: .2, :. :.:

...... .,.........,::.. :.. :...: ,........,.:...:_,,.:,...,:...::..

: : : : ::::: : : : :::::: : : : : ::::: : : : : ::2:

i i4iiiiii i i iiiiiii i i iiiiiii i i iiiii

!" !_'i" ! !!!!! !"

• . . .-.-_ ,_.._ v.-- ._,._,-., 7"_ "

............ "_:_-_ _ te "" _ "'_", ',',','1" '

•'! _?_ii_'._-"_'×¢ ". " !! :' :..i¢ i_! ?
:'":":":':':":':'"'."_"'"_,',L_'-- "":':': " '':' _': '""'"':":":':':":"

....,.....:::.. ;.. :..., : ,.,,:.:...::=:::...::..

.... ..,.,,,....::.... :,.:.,..:......,..., ..: ...::..::, ..,..:: _

: : : :::::: : : : :::::: : : : :::::: : : : :::::

: : : :::::i : : : :::::i : : : :::::i : : : :::::1

101 102 10a 104
tokensgeneratedpernode

1 node
e-- -o 2 nodes

...... _ 3 nodes
x K 4 nodes
H 5 nodes
$-- -0 6 nodes
A. _ 7 nodes

.... * 8 nodes

Figure 7: Execution time versus the number of tokens generated per node (in loglog representation).

Discussion of Figure 7: This figure shows the runtime versus thenumber oftokens generate(l per

node. (loglog)

• On one node, the program rm_s faster as the number of tokens increase! Recall that the number of

tokens corresponds to the nmnber of partitions. Hence, for a fixed mesh size, more partitions imply

less elements per partition. Since the elements in a partition are organized in a tree, it follows that the
trees will be shallower. This, in turn, accelerates the tree operations. The curve for one node in the

loglog representation confirms that the underlying data structure must be of logarithmic complexity.
• A reasonable st)eedup is obtained for up to five nodes. However, we must consider the additional

quality information (discussed below) for our evaluation, since quality has rather strong implications

for other parts (solver/preconditioner) of a complete FE application. It might therefore be useflll to

invest some more resources that do not necessarily increase the speedup but improve quality.

• We observe a certain instability in the region where the number of tokens is not much greater than

the number of processors.

Results for DUAL

,o]
901----............ , ,.............

t

rII,>.$.=.-- _ _ _ _:,_"%'I_

E 60 _ : : :

4o i i..............

30

20 _ _ i, i _ J

0 500 I000 1500 2000 2500

tokens generated per node

_-- -O 2 nodes
----- 3 nodes
x 4 nodes

5 nodes
0-- -0 6 nodes

7 nodes
* * 8 nodes

Figure 8: Total migration frora node 0 versus the number of tokens generated per node.

Discussion of Figure 8: This figure shows the migration from node zero versus tim number of tokens

generated per node.

• We measure the migration as the percentage of all trimlgles that are, at the end, owned by nodes other

than node 0. This measure is somewhat imprecise, since a partition may migrate back and forth. _

• The migration increases with the number of nodes, but might decrease with the number of tokens if

not enough processors are available. We believe that this is because the DUAL load bala_acer is unable

to handle the load within these resource limitations.

• It seems that there is a region of stabilization at about 70 percent of migration. Asymptotically, the

percentage of migration from node 0 when using P nodes is 100 × (P - 1)/P. t'¥om our experience,

nfigration caaa be increased toward this asymptotic by using more processors or more tokens. Generat-

ing more tokens implies downsizing partitions, which in the e×treme case, consist of only one triangle.

However, we would then inevitably be faced with a fragmentation problem (and a total loss of locality).

• Once again, we observe a region of instability when the number of tokens is not much greater than the

nun]bet o,["processor8.

Discussion of Figures 9 and 10: These figures show the total variance and the unbiased variance

outside of node 0 ve, rsus the number of tokens generated per node.

6SLiC_I fl_ctuations m:tually occur, especfitlly if there are only a few processors m_d/or b_kens.

Results for DUAL

30

q _ _ - ,-O

25 ._< ,_ -O.-- m .,.iT+: .-

!

I
2£ .. ;

+z ':'E
8

I.:IA.+ {............. i........... >;.x..........

! ",:. + L +,."+' i

.......... £ ..

0 i
0 500 1000 1500 2000 2500

tokens generated per node

e-- -O 2 nodes
3 nodes

x _ 4 nodes
5 nodes

- -_ 6 nodes
7 nodes

.... + 8 nodes

Figure 9: Total variance versus the number of tokens generated per node.

• We define total variance as the expected deviation from the mean value of the number of triangles per

node measured as a percentage of the total number of triangles. Since this measure is biased towards

node 0, we also compute the variance outside of node 0 to evaluate the uniformity of the migration

(cf. Fig. 10).

• The variances oscillate rapidly if there are not enough tokens available. If not enough processors are

available, increasing the number of tokens tends to overload the load balmlcer.

• A large number of tokens seems to guarantee the stability of, aald possibly a slight improvement in,

the variances.

• Perhaps the most important result is the quality of load balancing. Experimental vahms of the unbiased

variance presented in Fig. 10 show that the load is extremely well balanced (between 3 and 6 percent).

This is generally acceptable for actual adaptive FE calculations.

5.1 Summary of Results

We summarize our results by addressing each of the three observations made in Sec. 1:

• The experimental results confirm our hypothesis outlined in the introduction: although we did not

have an explicit repartitioning/remapping phase, the processors appear to have a good and balanced

utilization as long as there are enough tokens being processed in the system (cf. Figs. 8 and 9).

• The experiments also show that the natural indexing method used to enhance token mobility does

appear to work; i.e, the remote communication due to token migration does not seem to tlave a major

impact on the overall perfornlance (see the region of good speedup and balanced workload ilnplied in

the curves in Fig. 7). Of course, the FE solution phase is usually more sensitiw_ to data locality which

is not inchided in the scope of this paper.

10

g
O

Q)

0
t-

O
e-

102

10(

Results for DUAL

, _ _ __ i.......... ._ Ce
• . '. '. ' _ _ _ i

A i i , i

500 1000 1500 2000 2500
tokens generated per node

3 nodes
x 4 nodes
a o 5 nodes

- -0 6 nodes!
7 nodes

* * 8 nodes

Figure i0: Unbiased variance outside of node 0 versus the number of tokens generated per node (ill

semilog representation). Note that results are not shown for two nodes since node 0 is excluded when

computing this variance.

• Finally, the experimental results have shown that the load balancing works smoothly as long as there

are enough computational resources available, even when the workload evolution is irregular. This can

be observed in Fig. 10, where we see a stable and small variance in the ex-pected workload (measured

by the number of triangles).

6 Conclusions

The ability to dynamically adapt a finite element mesh is a powerfifl tool for solving computational

problems with evolving physical features; however, an efficient parallel implementation is rather difficult.

To address this problem, we have examined a multithreaded approadl for performing the load balazlcing

automatically.

Preliminary results from experiments with 2D triangular meshes using the EARTH multithreaded

system axe extremely promising. Tim EARTH token mechanism was used to I)ala_lce the highly irregular

and nonuniform workload. _lb achieve good token mobility, a new indexing methodoh)gy was used.

During mesh adaption, tokens that migrate to another processor to be executed leave the processed

data in the destination processor. This is a novel approach that allows simultaneous load balancing

and load-driven data remapping. Results showed that the load is extremely well balanced (3 6% of

ideal) when a sulficient nmnber of tokens is generated (at least 512 tokens per node), q_'oken generation

(up to 2048 tokens per node) does not significantly increase system overhead or degrade performance,

independent of the munber of nodes. Having a large number of tokens decreases the total wu'iance of the

load balancer and stabilizes the unifornfity of the migration. Finally, an underloadcd system (one that

I1

hasfewtokenspernode)causesinstabilityandleadstounpredictablebehaviorbytheloadbalaacer.
Theseconclusionsdonotseemverysurprising,butqualitativelyconfirmwhatwas e:q)eeted. Given

the fact that very minimal programming effort (oil tile user level) was necessary to obtain these results

and that this is one of the first multithreaded approaches to tackle unstructured mesh adaption, our

findings and observations become extremely valuable. More extensive experiments will bc done in the

future, and the results compared critically with an explicit message-passing implementation [14] mid

a global load balancer [13]. One must remember however that dynamic mesh adaption comprises a

small though significant part of a complete application. Further investigations are needed to determine

whether the functionality of such an approach is viable for real applications.

References

[1] R. Biswas, R.C. Strawn: A new procedure for dynamic adaption of three-dimensional unstructured

grids, Appl. Num. Math. 13 (1994) 437 452.

[2] R. Biswas, R.C. Strawn: Mesh quality control for multiply-refined tetrahedral grids, Appl. Num.

Math. 20 (1996) 337-348.

[3] H. Cai, O. Maquelin, G.R. Gao: Design and evaluation of dynamic load balancing schemes un-
der a multithreaded execution model, ACAPS Tech. Rep., McGill Univ., Montreal, Canada, in

preparation.

[4] N. Chrisochoides, E. Houstis, J. Rice: Mapping algorithms and software enviromnent for data

parallel PDE iterative solvers, J. Par. Dist. Comput. 21 (1994) 75-95.

[5] C.H. Cormen, C.E. Leiserson, R.L. Rivest: h_troduction to Algorithms, MIT Press, 1990.

[6]http://www, capsl, udel. edu/EARTH/

[7] J. Gerlach, G. Heber: Fhndamentals of natural indexing for simplex finite elements in two and
three dimensions, RWCP Tech. Rep., Real World Computing Partnership, Tsukuba-shi, Japan, in

preparation.

[8] J. Gerlach, M. Sato, Y. Ishikawa: A framework for parallel adaptive finite element methods and its

template based implementation in C++, 1st Intl. Sci. Comput. in Obj. Oriented Par. Env. Con/.,

Marina del Rey, CA (1997) to appear.

[9] H.J. Hum, O.C. Maque[in, K.B. Theobald, X. Tian, G.R. Gao, and L.J. Hendren: A study of the

EARTH-MANNA multithreaded system, Intl. d. o/Par. Prog. 24 (1996) 319-347.

[10] H.J. Hum, K.B. Theobald, and G.R. Gao: Building multithreaded architectures with off-the-shelf

microprocessors, 8th Intl. Pa_: Proc. Syrup., Cancun, Mexico (1994) 288-297.

[11] O.C. Maquelin: Load balancing and resource management in the ADAM machine, Advanced Topics

in Dataflow Computing and Multith_ading, IEEE Press (1995) 307-323.

[12] O.C. Maquelin, H.J. Hum, and G.R. Gao: Costs and benefits of multithreading with off-the-shelf

RISC processors, Euro-Par'95 Paralle.l Processing, Springer-Verlag LNCS 966 (1995) 117 128.

[13] L. Oliker, R. Biswas: PLUM: Parallel load balancing for adaptive unstructured meshes, NAS Tech.

Rep. 97-020, NASA Ames Research Center, Moffett Field, CA, 1997.

[14] L. Oliker, R. Biswas, R.C. Strawn: Parallel implementation of all adaptive scheme for 3D unstruc-

tured grids on the SP2, t'a_nllel Algorithms for hv'cgularly Structured l'roblems, Springer-Verlag
LNCS 1117 (1996) 35 47.

12

